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Introduction

My mathematical research is in the general area of number theory. I would be more

specific but my projects do not fit well into a specific aspect of number theory.

My dissertation focuses on the construction, existence, and concentration of cer-

tain classes of primes in many different bases. However, I have also done work

on the irreducibility of generalized Bernoulli polynomials and irreducible polyno-

mials of the form f(x) + Mg(x) where f and g are relatively prime polynomials

with integer coefficients and M is a positive integer. The methodology in which I

construct my research follows these steps. First, identify a possible project from

a previous project, from reading other papers on a topic, and/or from discussing

a topic with a colleague. Second, use brut force computation or (more frequently)

use self-written code and algorithms in mathematical softwares like Maple, Magma,

and SageMath in an effort to identify patterns and anomalies. Lastly, attempt to

prove the patterns and anomalies discovered in the previous step.

My long term goal in my research is to classify new forms of irreducible polyno-

mials and primes and derive new ways to find such objects. While my work tends

to be more theoretical, much of the results can be made applicable in cryptographic

and information security fields like RSA encryption and generalizations. These

new methods and objects can be applied to cryptographic systems and information

security systems to improve current encryption and decryption systems.

In the last five years at the University of South Carolina, I have put my focus

on identifying techniques where number theorists (and some algebraists) have used

these tools to discover new classes of primes and irreducible polynomials and char-

acterize these classes. This work has led me to the application of covering systems,

prime density theorems, and Newton polygons. Below I will describe this work with

more background details and I will discuss ideas for further work.
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Classes of Primes and Covering Systems

The discovery and characterization of classes of primes is an abundant and old topic

of research in number theory. Some well-known problems exist on the topic like the

twin prime conjecture, Fermat prime conjecture, and 2n + 1 prime conjecture. In

all these cases, the discussion is whether or not there exist infinitely many of these

primes. However, the first part of these conjectures is to confirm existence. For

these open problems, this step is trivial. Observe that 3 and 5 are twin primes as

well as 5 and 7. For Fermat primes, F0 = 3, F1 = 5, and F2 = 17 are all prime. For

n2 + 1, 22 + 1 = 5, 42 + 1 = 17, and 62 + 1 = 37 are all prime. In my research, the

existence of a specific type of prime is not obvious. I will ellaborate on this later

on.

These famous primes are interesting to number theorists since the existence is

apparent, but, when the numbers become large, the existence is not obvious at all.

Consider the Fermat prime problem. After F4 = 65537, L. Euler showed F5 was

not prime in 1732. In fact, it is believed that there are no other Fermat primes as

suggested by the heuristic argument. In the case of twin primes, large primes were

found, but whether there are infinitely many remains open. A. de Polignac posed a

generalized version of the twin prime conjecture in 1849 and, until 2013, no progress

had been made. Y. Zhang proved that there are infinitely many prime pairs with

a gap of no more than 70 million. This opened the door for T. Tao and Polymath

to reduce the bound to 4680 the same year. At the end of the year, J. Maynard

reduced the bound down to 600 using a variation of the sieve used by Zhang. Then a

variation of Polymath reduced the bound to 246 in 2014. The conjecture on primes

of the form 2n+1 has been labeled as one of Landau’s 4 problems back in 1912 and

has not been solved today.

These conjectures demonstrate how difficult it can be to prove the results about

specific prime classes. This is what makes my research exciting. Some of the primes I

focused on during my time at the University of South Carolina were widely digitally

delicate primes, Sierpiński primes, Riesel primes, and any combination of these. W.

Sierpiński proved there are infinitely many odd integers which are Sierpiński [?].

Similarly, Riesel proved there are infinitely many odd integers which are Riesel

numbers [?]. In 1998, Brier found there are infinitely many odd integers which are

both Sierpiński and Riesel and gave an explicit example. In 2013, C. Clavier found

that for every nonnegative integer m, every number in the arithmetic progression

3316923598096294713661 + 3770214739596601257962594704110m,

is a Brier number. Clavier found such a progression through the use of covering

systems which I will talk about later. What is important to note here is that the

existence of a Brier number is not obvious.

Now consider widely digitally delicate primes. For a prime to be digitally delicate,

it must be composite when any digit is changed to another digit. For example,
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294001 is a prime where

d94001, 2d4001, 29d001, 294d01, 2940d1, and 29400d

are composite or equal to 294001 for every d ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Now this

is a computatable process with a finite number of steps to determine if it is true.

Widely digitally delicate primes are digitally delicate primes, but they also must be

composite if any of the infinitely many leading zeros is changed to another digit. For

example, 294001 is not a widely digitally delicate prime since 10294001 is a prime.

The fact that there are infinitely many leading zeros that, when changed, could

result in a composite number makes this problem less computable. In fact, the only

know example of a widely digitally delicate prime was found by J. Grantham and is

4030 digits [?]. Also, J. Rodgers determined the first 2.5·1011 integers are not widely
digitally delicate. Thus, the existence is difficult to show, and the concentration of

such primes seems small. However, this is not the case.

D. Shiu showed that in any arithmetic progression containing infinitely many

primes, there are arbitrarily long sequences of consecutive primes [?]. Even fur-

ther, J. Maynard showed that for every positive integer k, in any arithmetic pro-

gression Am + B, where A > 0, B ≥ 0 and m ≥ 0 are integers with A and B

fixed and gcd(A,B) = 1, a positive proportion of positive integers ℓ are such that

pℓ, pℓ+1, . . . , pℓ+k−1 are all in the arithmetic progression Am+B, where pj denotes

the jth prime [?]. If we consider Clavier’s arithmetic progression of Brier numbers,

we notice that

3316923598096294713661 and 3770214739596601257962594704110

are relatively prime. In any arithmetic progression Am + B with gcd(A,B) = 1,

there are infinitely many primes. Thus, Shiu’s theorem gives that there arbitrarily

long sequences of consecutive primes in the progression which are Brier numbers.

M. Filaseta and J. Juillerat used this idea to construct an arithmetic progression of

widely digitally delicate primes Am+B for which gcd(A,B) = 1 to reach the same

conclusion about widely digitally delicate primes [?] (also in [?]). This confirms

there is a positive proportion of primes which are widely digitally delicate contrary

to what it seems. It is worth mentioning that Filaseta and J. Southwick also showed

this result by a similar argument, but with a constructed sieve [?] (also in [?]).

The construction of both the arithmetic progressions was based on the use of

covering systems. Thus, in my research I constructed covering systems for primes

that are both widely digitally delicate and Brier numbers. For widely digitally del-

icate primes, Filaseta and Juillerat made 18 covering systems, one for each possible

digit increase or decrease. For the case of Brier primes, I made covering systems

for both Sierpiński primes and Riesel primes without repeating the primes used in

the other 18 covering systems. Filaseta and I were able to conclude that there are

arbitrarily long sequences of consecutive primes that are widely digitally delicate
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and Brier numbers [?]. The most interesting aspect of this result is that despite

there being a positive proportion of primes that are both widely digitally delicate

and Brier numbers, there is no known example. Additionally, this result allowed us

to conclude the same as Filaseta and Juillerat for widely digitally delicate primes

but in base 2 [?].

These results open up the opportunity to consider other bases for any combina-

tion of the above prime classes. T. Tao [?] and S. Konyagin [?] have independently

work on widely digitally delicate primes in alternate bases. Any prime classification

with similar structure can warrant the same results. In the future, I plan to explore

these other classes and attempt conclude similar results. This highlights the impor-

tance of constructing arithmetic progressions of specific classes of primes. I intend

to explore other constructions of arithmetic progressions of specific prime classes

and make conclusions about their densities and occurrences amongst all primes in

my own scholarly work. This can include future undergraduate research projects on

finding explicit examples, refining coverings, extending the results to other bases,

and more.

Irreducible Polynomials and Newton Polygons

Almost all of my work on irreducible polynomials has focused around the use of

Newton polygons. The work is focused on the use of the following theorem by

Dumas [?] (1906).

Theorem 1. Let g(x) and h(x) be in Z[x] with g(0)h(0) ̸= 0, and let p be a prime.

Let k be a nonnegative integer such that pk divides the leading coefficient of g(x)h(x)

but pk+1 does not. Then the edges of the Newton polygon for g(x)h(x) with respect

to p can be formed by constructing a polygonal path beginning at (0, k) and using

translates of the edges in the Newton polygons for g(x) and h(x) with respect to p,

using exactly one translate for each edge of the Newton polygons for g(x) and h(x).

Necessarily, the translated edges are translated in such a way as to form a polygonal

path with the slopes of the edges increasing.

A Newton polygon with respect to a prime is the convex hull of a graph of points

(xi, yi) with x0 = 0, x1 = 1, . . . , xn = n where n is the degree of the polynomial

and yi is the highest power of the prime that divides the associated coefficient. For

example, the Newton polygon for f(x) = x3+3x2+12x+9 with respect to the prime

3 is the convex hull of the points (0, 0), (1, 1), (2, 1), and (3, 2). This means the

Newton polygon is made of the lines connecting (0, 0) to (2, 1) and (2, 1) to (3, 2).

The theorem says that if there are factors g(x) and h(x) of the polynomial f(x),

then the slopes of any Newton polygon edge with respect to p (up to translation)

will be the reciporcal of the degrees of the factors, dg and dh, times some constant.
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For example, consider the same f(x) from earlier. Take p = 3. Then the Newton

polygon of f(x) with respect to 3 has 2 edges: one of slope 1/2 and the other of

slope 1. Therefore, if there are factors of f(x), they will be of degree 2 or 1.

The important question now is how does the theorem demonstrate irreducibility.

Consider the following polynomial: f(x) = x6+24x5+12x3−18x+36. The Newton

polygon of f(x) with respect to 2 will be the lines connecting (0, 0) to (5, 1) and

(5, 1) to (6, 2). Thus, the possible degrees of factors are 5 and 1. The Newton

polygon of f(x) with respect to 3 will be the lines connecting (0, 0) to (3, 1) and

(3, 1) to (6, 2). Thus, the possible degree of factors of f(x) is only 3. Since the

Newton polygons give factors that do not match, f(x) is irreducible. Now we show

how this is useful in my research.

Let B
(l)
m (x) be the generalized Bernoulli polynomial such that

f(x) =

(
t

et − 1

)l

etx =

∞∑
m=0

B(l)
m (x)

tm

m!
.

A. Adelberg has shown numerous results about evenm for B
(m)
m (x), but Adelberg

and Filaseta showed that 1/5 of all B
(m)
m (x) are irreducible [?]. In their paper, they

focused on a specific class of evenm and showed that these will always be irreducible

by use of Eisenstein’s Criterion. Note that Newton polygons are a stronger argument

for irreducibility than Eisenstein’s Criterion. Filaseta and I are currently working on

improving this bound by using Newton polygons. I am excited about this project

due to the potential that the approach of Newton polygons provides because of

the following conjecture. Adelberg conjectures that if m is even, then B
(m)
m is

irreducible, and when m is odd, B
(m)
m is the product of x−m/2 and an irreducible

polynomial [?]. If this is correct, there is much room for improvement on the 1/5

bound since Adelberg and Filaseta only account for some of the even cases. We are

still in the thick of this project and intend to make strides this academic year.

Another ongoing project deals with f(x) +Mg(x) where M is a positive integer

and f and g are relatively prime integer polynomials. Filaseta and R. Wilcox have

shown some results on the polynomials without coming up with an explicit bound

on M [?]. My goal is to find an explicit bound on M depending on f and g.

If df < dg, we have shown there is such a bound, depending on f and g, that

gives f(x) +Mg(x) is irreducible when a prime pk divides the leading coefficient of

f(x)+Mg(x) but pk+1 does not. The structure of the proof depends on the 2 edges

of Newton polygon with respect to p. The slopes of these edges give a contradiction

due to the relationship of the slopes to the degrees of the factors. This result is

complete and is being submitted this academic year.



6

I intend to continue improvements on the generalized Bernoulli polynomial irre-

ducibility concentration by the use of Newton polynomials. To be more specific, I

would like to consider the odd cases independently to see how useful the Newton

polygons can be in that context. This methodology can be extended to alternate

forms of polynomials which I will explore. The applications of Newton polygons are

vast and bountiful, lending themselves to a dense research space. The two above

examples of polynomials are quite different examples of applying Newton polygons

to identifying irreducible polynomials. A very good undergraduate project would

be to find explicit examples of irreducible generalized Bernoulli polynomials via the

use of Newton polygons with respect to a select number of primes. A student could

even attempt to talk about the ramifications of Newton polygons for irreducible

polynomial classes that were shown irreducible via other means.
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